Production Deployment Guide =========================== .. note:: **Production-ready deployment** This guide walks you through deploying HoneyHive in production environments with proper security, monitoring, and scalability considerations. Overview -------- Deploying HoneyHive in production requires careful consideration of: - **Security**: API key management and data protection - **Performance**: Minimizing overhead and optimizing throughput - **Reliability**: Error handling and failover strategies - **Monitoring**: Observing the observability system itself - **Scalability**: Handling high-volume applications This guide provides step-by-step instructions for each consideration. Security Configuration ---------------------- API Key Management ~~~~~~~~~~~~~~~~~~ **Never hardcode API keys in production code.** **Recommended: Environment Variables** .. code-block:: bash # .env file (not committed to version control) HH_API_KEY=hh_prod_your_production_key_here HH_SOURCE=production .. code-block:: python import os from honeyhive import HoneyHiveTracer # Secure initialization tracer = HoneyHiveTracer.init( api_key=os.getenv("HH_API_KEY"), source=os.getenv("HH_SOURCE") ) **Enterprise Secret Management:** For production environments, use dedicated secret management services: - **AWS Secrets Manager**: Retrieve from ``secretsmanager`` using boto3 - **HashiCorp Vault**: Use ``hvac`` client to fetch from ``kv`` store - **Azure Key Vault**: Use ``azure-keyvault-secrets`` SDK - **Google Secret Manager**: Use ``google-cloud-secret-manager`` All services follow the same pattern: fetch credentials at startup, handle failures gracefully, and return ``None`` if unavailable to enable graceful degradation. Network Security ~~~~~~~~~~~~~~~~ **Configure TLS and network security**: .. code-block:: python from honeyhive import HoneyHiveTracer tracer = HoneyHiveTracer.init( api_key=os.getenv("HH_API_KEY"), base_url="https://api.honeyhive.ai", # Always use HTTPS timeout=30.0, # Reasonable timeout # Configure for corporate environments verify_ssl=True, # Verify SSL certificates ) **Firewall and Proxy Configuration**: .. code-block:: python import os # Configure proxy if needed os.environ['HTTPS_PROXY'] = 'https://corporate-proxy:8080' os.environ['HTTP_PROXY'] = 'http://corporate-proxy:8080' # Or configure in code tracer = HoneyHiveTracer.init( api_key=os.getenv("HH_API_KEY"), # Custom HTTP configuration if needed ) Performance Optimization ------------------------ .. seealso:: **Tracer Performance Benchmarks** HoneyHive provides comprehensive performance benchmarking capabilities. The SDK consistently achieves: - **Overhead Latency**: < 10ms tracer overhead per operation - **Memory Usage**: < 50MB memory overhead - **Network I/O**: Tracer traffic < 10% of LLM traffic - **Export Latency**: < 100ms average export time - **Trace Coverage**: 100% of requests traced - **Attribute Completeness**: All required span attributes captured Contact the HoneyHive team for detailed performance benchmarking reports and high-throughput validation data. Minimize Overhead ~~~~~~~~~~~~~~~~~ **1. Selective Tracing** Don't trace everything - focus on business-critical operations: .. code-block:: python from honeyhive import HoneyHiveTracer, trace import random from honeyhive.models import EventType tracer = HoneyHiveTracer.init( api_key=os.getenv("HH_API_KEY") ) # Trace critical business operations @trace(tracer=tracer, event_type=EventType.session) def process_payment(user_id: str, amount: float): # Always trace financial operations pass # Sample high-frequency operations @trace(tracer=tracer, event_type=EventType.tool) def handle_api_request(request): # Only trace 1% of API requests if random.random() < 0.01: # Detailed tracing pass **2. Async Processing** Use async patterns for high-throughput applications: .. code-block:: python import asyncio from honeyhive import HoneyHiveTracer, trace tracer = HoneyHiveTracer.init( api_key=os.getenv("HH_API_KEY") ) @trace(tracer=tracer) async def process_user_request(user_id: str): """Async processing with automatic tracing.""" # Non-blocking I/O operations user_data = await fetch_user_data(user_id) result = await process_data(user_data) return result **3. Batch Operations** Group operations to reduce overhead: .. code-block:: python @trace(tracer=tracer, event_type=EventType.tool) def process_batch(items: list): """Process multiple items in one traced operation.""" results = [] with tracer.trace("batch_validation") as span: valid_items = [item for item in items if validate_item(item)] span.set_attribute("batch.valid_count", len(valid_items)) with tracer.trace("batch_processing") as span: results = [process_item(item) for item in valid_items] span.set_attribute("batch.processed_count", len(results)) return results Error Handling & Reliability ---------------------------- Graceful Degradation ~~~~~~~~~~~~~~~~~~~~ **The SDK provides built-in graceful degradation** - tracing failures will never crash your application. HoneyHive automatically handles errors in tracing operations, ensuring your business logic continues uninterrupted even if the tracing infrastructure is unavailable. **Comprehensive Error Handling:** All SDK operations are wrapped in try-except blocks that catch and log errors without propagating them: .. code-block:: python from honeyhive import HoneyHiveTracer, trace import logging logger = logging.getLogger(__name__) # ✅ Tracer initialization - NEVER throws exceptions # Even with invalid API key, network failures, or configuration errors tracer = HoneyHiveTracer.init( api_key="invalid-key", # Won't crash - gracefully degrades source=os.getenv("HH_SOURCE", "production"), timeout=10.0 # Configure timeout for slow networks (default: 30s) ) # ✅ Decorator tracing - NEVER throws exceptions # Works even if HoneyHive API is down or unreachable @trace(tracer=tracer) def critical_business_function(): """This function ALWAYS executes - tracing errors logged but not raised.""" # Your business logic here - never interrupted by tracing errors return "success" # ✅ Manual span enrichment - NEVER throws exceptions # Even with invalid data types or API failures @trace(tracer=tracer) def user_request_handler(user_id, query): try: result = process_query(query) # Enrichment errors are caught internally tracer.enrich_span(metadata={"user_id": user_id}) return result except Exception as e: # Your error handling - SDK never adds exceptions here logger.error(f"Business logic error: {e}") raise **What Gets Caught Internally:** 1. **Network Failures**: Timeouts, connection errors, DNS failures 2. **Authentication Errors**: Invalid API keys, expired tokens 3. **Serialization Errors**: Invalid span data, encoding issues 4. **API Errors**: Rate limits, service unavailable, malformed responses 5. **Configuration Errors**: Invalid URLs, missing environment variables .. note:: **Timeout Configuration** The ``timeout`` parameter controls how long the SDK waits for API responses before gracefully degrading. Lower timeouts (5-10s) ensure faster degradation in network issues, while higher timeouts (30-60s) accommodate slow networks. Default is 30 seconds. **Evidence in Production:** .. code-block:: python # REAL-WORLD TEST: These ALL work without exceptions # ❌ Invalid API key → Logs warning, continues execution tracer1 = HoneyHiveTracer.init(api_key="invalid") # ❌ HoneyHive API down → Logs error, continues execution tracer2 = HoneyHiveTracer.init( api_key=os.getenv("HH_API_KEY"), server_url="https://nonexistent-domain.invalid" ) # ❌ Network timeout → Logs timeout, continues execution tracer3 = HoneyHiveTracer.init( api_key=os.getenv("HH_API_KEY"), timeout=0.001 # Impossibly short timeout ) # ✅ ALL of the above initialize successfully and your code continues # ✅ Traced functions execute normally even with failed tracers # ✅ Check logs for warnings - application never crashes Network Retries ~~~~~~~~~~~~~~~ **The SDK provides built-in network retry logic** for transient failures. HoneyHive automatically retries failed API requests with exponential backoff, handling temporary network issues without requiring manual retry implementation. .. code-block:: python from honeyhive import HoneyHiveTracer # Simple initialization - retries are automatic tracer = HoneyHiveTracer.init( api_key=os.getenv("HH_API_KEY"), source=os.getenv("HH_SOURCE", "production") ) # The SDK handles: # - Network timeouts → automatic retry with backoff # - Transient API errors → automatic retry with backoff # - Connection failures → graceful degradation after retries .. note:: **Built-in Retry Behavior** The SDK automatically retries failed requests up to 3 times with exponential backoff. This handles most transient network issues without requiring custom retry logic. Container Deployment -------------------- Docker Configuration ~~~~~~~~~~~~~~~~~~~~ **Key HoneyHive-specific Docker configuration**: .. code-block:: dockerfile # Use Python 3.11+ for HoneyHive SDK FROM python:3.11-slim # Install HoneyHive SDK RUN pip install honeyhive>=0.1.0 # HoneyHive environment variables (overridden at runtime) ENV HH_API_KEY="" ENV HH_SOURCE="production" **docker-compose.yml** - pass HoneyHive credentials: .. code-block:: yaml services: app: environment: - HH_API_KEY=${HH_API_KEY} - HH_SOURCE=production Kubernetes Deployment ~~~~~~~~~~~~~~~~~~~~~ **Store API key in Kubernetes Secret**: .. code-block:: bash kubectl create secret generic honeyhive-secret \ --from-literal=api-key= **Reference in Deployment**: .. code-block:: yaml env: - name: HH_API_KEY valueFrom: secretKeyRef: name: honeyhive-secret key: api-key - name: HH_SOURCE value: "production" Production Checklist -------------------- Before Going Live ~~~~~~~~~~~~~~~~~ **Security:** - [ ] API keys stored in secure secret management - [ ] HTTPS-only communication configured - [ ] Network access properly restricted - [ ] No sensitive data in trace attributes **Performance:** - [ ] Tracing overhead measured and acceptable - [ ] Selective tracing strategy implemented - [ ] Batch processing for high-volume operations - [ ] Circuit breaker pattern implemented **Reliability:** - [ ] Graceful degradation when tracing fails - [ ] Retry logic for transient failures - [ ] Health checks for tracing infrastructure - [ ] Monitoring and alerting in place **Operations:** - [ ] Deployment strategy tested - [ ] Rollback plan prepared - [ ] Documentation updated - [ ] Team trained on troubleshooting **Compliance:** - [ ] Data retention policies configured - [ ] Privacy requirements met - [ ] Audit logging enabled - [ ] Compliance team approval obtained Ongoing Maintenance ~~~~~~~~~~~~~~~~~~~ **Weekly:** - Monitor tracing performance metrics - Review error rates and patterns - Check for new SDK updates **Monthly:** - Analyze tracing data for insights - Review and optimize trace selection - Update documentation as needed **Quarterly:** - Security review of configuration - Performance optimization review - Disaster recovery testing **Best Practices Summary:** 1. **Security First**: Never compromise on API key security 2. **Graceful Degradation**: Tracing failures shouldn't crash your app 3. **Monitor Everything**: Monitor your monitoring system 4. **Start Simple**: Begin with basic tracing, add complexity gradually 5. **Test Thoroughly**: Test tracing in staging environments first .. tip:: Production observability is about balance - you want comprehensive visibility without impacting application performance or reliability. Start conservative and expand your tracing coverage based on actual operational needs.