Integrate with Anthropic ======================== .. note:: **Problem-solving guide for Anthropic integration** This guide helps you solve specific problems when integrating HoneyHive with Anthropic, with support for multiple instrumentor options. This guide covers Anthropic integration with HoneyHive's BYOI architecture, supporting both OpenInference and Traceloop instrumentors. Compatibility ------------- **Problem**: I need to know if my Python version and Anthropic SDK version are compatible with HoneyHive. **Solution**: Check the compatibility information below before installation. Python Version Support ^^^^^^^^^^^^^^^^^^^^^^ .. list-table:: :header-rows: 1 :widths: 30 70 * - Support Level - Python Versions * - Fully Supported - 3.11, 3.12, 3.13 * - Not Supported - 3.10 and below Provider SDK Requirements ^^^^^^^^^^^^^^^^^^^^^^^^^ - **Minimum**: anthropic >= 0.17.0 - **Recommended**: anthropic >= 0.21.0 - **Tested Versions**: 0.21.0, 0.22.0, 0.23.0 Instrumentor Compatibility ^^^^^^^^^^^^^^^^^^^^^^^^^^ .. list-table:: :header-rows: 1 :widths: 30 20 50 * - Instrumentor - Status - Notes * - OpenInference - Fully Supported - Full Claude 3 family support with streaming and vision * - Traceloop - Fully Supported - Enhanced metrics with Claude-specific cost tracking Known Limitations ^^^^^^^^^^^^^^^^^ - **Streaming**: Partial support - requires manual context management for proper traces - **Vision API**: Supported for Claude 3 models, traced automatically - **Tool Use**: Fully supported with both instrumentors - **Message Batching**: Not yet supported by instrumentors, use manual tracing .. note:: For the complete compatibility matrix across all providers, see :doc:`/how-to/integrations/multi-provider`. Choose Your Instrumentor ------------------------ **Problem**: I need to choose between OpenInference and Traceloop for Anthropic integration. **Solution**: Choose the instrumentor that best fits your needs: - **OpenInference**: Open-source, lightweight, great for getting started - **Traceloop**: Enhanced LLM metrics, cost tracking, production optimizations .. raw:: html
.. raw:: html
**Best for**: Open-source projects, simple tracing needs, getting started quickly .. code-block:: bash # Recommended: Install with Anthropic integration pip install honeyhive[openinference-anthropic] # Alternative: Manual installation pip install honeyhive openinference-instrumentation-anthropic anthropic>=0.17.0 .. raw:: html
.. code-block:: python from honeyhive import HoneyHiveTracer from openinference.instrumentation.anthropic import AnthropicInstrumentor import anthropic import os # Environment variables (recommended for production) # .env file: # HH_API_KEY=your-honeyhive-key # ANTHROPIC_API_KEY=your-anthropic-key # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Uses HH_API_KEY from environment # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) # Basic usage with error handling try: client = anthropic.Anthropic() # Uses ANTHROPIC_API_KEY automatically response = client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role": "user", "content": "Hello!"}] ) print(response.content[0].text) # Automatically traced! ✨ except anthropic.APIError as e: print(f"Anthropic API error: {e}") except Exception as e: print(f"Unexpected error: {e}") .. raw:: html
.. code-block:: python from honeyhive import HoneyHiveTracer, trace, enrich_span from honeyhive.models import EventType from openinference.instrumentation.anthropic import AnthropicInstrumentor import anthropic # Initialize with custom configuration # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable project="your-project", # Or set HH_PROJECT environment variable source="production" # Or set HH_SOURCE environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) @trace(tracer=tracer, event_type=EventType.chain) def analyze_document(document: str) -> dict: """Advanced example with business context and multiple Anthropic calls.""" client = anthropic.Anthropic() # Add business context to the trace enrich_span({ "business.input_type": type(document).__name__, "business.use_case": "document_analysis", "anthropic.strategy": "claude_reasoning", "instrumentor.type": "openinference" }) try: # First call: Quick summary with Claude Sonnet summary_response = client.messages.create( model="claude-3-sonnet-20240229", max_tokens=500, messages=[{ "role": "user", "content": f"Provide a brief summary of this document: {document}" }] ) # Second call: Detailed analysis with Claude Opus analysis_response = client.messages.create( model="claude-3-opus-20240229", max_tokens=1000, messages=[{ "role": "user", "content": f"Provide detailed analysis with insights: {document}" }] ) # Add result metadata enrich_span({ "business.successful": True, "anthropic.models_used": ["claude-3-sonnet-20240229", "claude-3-opus-20240229"], "business.result_confidence": "high" }) return {"summary": summary_response.content[0].text, "analysis": analysis_response.content[0].text} except anthropic.APIError as e: enrich_span({ "error.type": "api_error", "error.message": str(e), "instrumentor.source": "openinference" }) raise .. raw:: html
**Common OpenInference Issues**: 1. **Missing Traces** .. code-block:: python # Use correct initialization pattern # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) 2. **Performance for High Volume** .. code-block:: python # OpenInference uses efficient span processors automatically # No additional configuration needed 3. **Multiple Instrumentors** .. code-block:: python # You can combine OpenInference with other instrumentors from openinference.instrumentation.anthropic import AnthropicInstrumentor from openinference.instrumentation.openai import OpenAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentors separately with tracer_provider anthropic_instrumentor = AnthropicInstrumentor() openai_instrumentor = OpenAIInstrumentor() anthropic_instrumentor.instrument(tracer_provider=tracer.provider) openai_instrumentor.instrument(tracer_provider=tracer.provider) 4. **Environment Configuration** .. code-block:: bash # HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # Anthropic configuration export ANTHROPIC_API_KEY="your-anthropic-api-key" .. raw:: html
.. raw:: html
.. raw:: html
**Best for**: Production deployments, cost tracking, enhanced LLM observability .. code-block:: bash # Recommended: Install with Traceloop Anthropic integration pip install honeyhive[traceloop-anthropic] # Alternative: Manual installation pip install honeyhive opentelemetry-instrumentation-anthropic anthropic>=0.17.0 .. raw:: html
.. code-block:: python from honeyhive import HoneyHiveTracer from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor import anthropic import os # Environment variables (recommended for production) # .env file: # HH_API_KEY=your-honeyhive-key # ANTHROPIC_API_KEY=your-anthropic-key # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Uses HH_API_KEY from environment # Step 2: Initialize Traceloop instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) # Basic usage with automatic tracing try: client = anthropic.Anthropic() # Uses ANTHROPIC_API_KEY automatically response = client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role": "user", "content": "Hello!"}] ) print(response.content[0].text) # Automatically traced by Traceloop with enhanced metrics! ✨ except anthropic.APIError as e: print(f"Anthropic API error: {e}") except Exception as e: print(f"Unexpected error: {e}") .. raw:: html
.. code-block:: python from honeyhive import HoneyHiveTracer, trace, enrich_span from honeyhive.models import EventType from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor import anthropic # Initialize HoneyHive with Traceloop instrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable project="your-project", # Or set HH_PROJECT environment variable source="production" # Or set HH_SOURCE environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) @trace(tracer=tracer, event_type=EventType.chain) def analyze_document(document: str) -> dict: """Advanced example with business context and enhanced LLM metrics.""" client = anthropic.Anthropic() # Add business context to the trace enrich_span({ "business.input_type": type(document).__name__, "business.use_case": "document_analysis", "anthropic.strategy": "cost_optimized_claude_reasoning", "instrumentor.type": "openllmetry", "observability.enhanced": True }) try: # First call: Quick summary with Claude Sonnet summary_response = client.messages.create( model="claude-3-sonnet-20240229", max_tokens=500, messages=[{ "role": "user", "content": f"Provide a brief summary of this document: {document}" }] ) # Second call: Detailed analysis with Claude Opus analysis_response = client.messages.create( model="claude-3-opus-20240229", max_tokens=1000, messages=[{ "role": "user", "content": f"Provide detailed analysis with insights: {document}" }] ) # Add result metadata enrich_span({ "business.successful": True, "anthropic.models_used": ["claude-3-sonnet-20240229", "claude-3-opus-20240229"], "business.result_confidence": "high", "openllmetry.cost_tracking": "enabled", "openllmetry.token_metrics": "captured" }) return {"summary": summary_response.content[0].text, "analysis": analysis_response.content[0].text} except anthropic.APIError as e: enrich_span({ "error.type": "api_error", "error.message": str(e), "instrumentor.error_handling": "openllmetry" }) raise .. raw:: html
**Common Traceloop Issues**: 1. **Missing Traces** .. code-block:: python # Ensure Traceloop instrumentor is passed to tracer from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) 2. **Enhanced Metrics Not Showing** .. code-block:: python # Ensure you're using the latest version # pip install --upgrade opentelemetry-instrumentation-anthropic # The instrumentor automatically captures enhanced metrics from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) 3. **Multiple Traceloop Instrumentors** .. code-block:: python # You can combine multiple Traceloop instrumentors from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor from opentelemetry.instrumentation.openai import OpenAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentors separately with tracer_provider anthropic_instrumentor = AnthropicInstrumentor() # Traceloop Anthropic openai_instrumentor = OpenAIInstrumentor() # Traceloop OpenAI anthropic_instrumentor.instrument(tracer_provider=tracer.provider) openai_instrumentor.instrument(tracer_provider=tracer.provider) 4. **Performance Optimization** .. code-block:: python # Traceloop instrumentors handle batching automatically # No additional configuration needed for performance 5. **Environment Configuration** .. code-block:: bash # HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # Anthropic configuration export ANTHROPIC_API_KEY="your-anthropic-api-key" # Optional: Traceloop cloud features export TRACELOOP_API_KEY="your-traceloop-key" export TRACELOOP_BASE_URL="https://api.traceloop.com" .. raw:: html
.. raw:: html
Comparison: OpenInference vs Traceloop for Anthropic ---------------------------------------------------- .. list-table:: Feature Comparison :header-rows: 1 :widths: 30 35 35 * - Feature - OpenInference - Traceloop * - **Setup Complexity** - Simple, single instrumentor - Single instrumentor setup * - **Token Tracking** - Basic span attributes - Detailed token metrics + costs * - **Model Metrics** - Model name, basic timing - Cost per model, latency analysis * - **Performance** - Lightweight, fast - Optimized with smart batching * - **Cost Analysis** - Manual calculation needed - Automatic cost per request * - **Production Ready** - ✅ Yes - ✅ Yes, with cost insights * - **Debugging** - Standard OpenTelemetry - Enhanced LLM-specific debug * - **Best For** - Simple integrations, dev - Production, cost optimization Migration Between Instrumentors ------------------------------- **From OpenInference to Traceloop**: .. code-block:: python # Before (OpenInference) from openinference.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) # After (Traceloop) - different instrumentor package from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) **From Traceloop to OpenInference**: .. code-block:: python # Before (Traceloop) from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) # After (OpenInference) from openinference.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = AnthropicInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider) See Also -------- - :doc:`multi-provider` - Use Anthropic with other providers - :doc:`../llm-application-patterns` - Common integration patterns - :doc:`../../tutorials/02-add-llm-tracing-5min` - LLM integration tutorial - :doc:`openai` - Similar integration for OpenAI GPT .. raw:: html