Integrate with Azure OpenAI
Note
Problem-solving guide for Azure OpenAI integration
This guide helps you solve specific problems when integrating HoneyHive with Azure OpenAI, with support for multiple instrumentor options.
This guide covers Azure OpenAI integration with HoneyHive’s BYOI architecture, supporting both OpenInference and Traceloop instrumentors.
Compatibility
Problem: I need to know if my Python version and Azure OpenAI SDK version are compatible with HoneyHive.
Solution: Check the compatibility information below before installation.
Python Version Support
Support Level |
Python Versions |
|---|---|
Fully Supported |
3.11, 3.12, 3.13 |
Not Supported |
3.10 and below |
Provider SDK Requirements
Minimum: openai >= 1.0.0
Recommended: openai >= 1.10.0
Tested Versions: 1.10.0, 1.11.0, 1.12.0
Instrumentor Compatibility
Instrumentor |
Status |
Notes |
|---|---|---|
OpenInference |
Fully Supported |
Full Azure OpenAI support with deployment-specific tracing |
Traceloop |
Fully Supported |
Enhanced metrics with Azure-specific cost tracking and quotas |
Known Limitations
Deployment Names: Must configure Azure deployment names separately from model names
API Versions: Requires Azure API version in configuration, traced in metadata
Managed Identity: Supported but requires additional Azure SDK configuration
Streaming: Fully supported with both instrumentors
Note
For the complete compatibility matrix across all providers, see Multi-Provider Integration.
Choose Your Instrumentor
Problem: I need to choose between OpenInference and Traceloop for Azure OpenAI integration.
Solution: Choose the instrumentor that best fits your needs:
OpenInference: Open-source, lightweight, great for getting started
Traceloop: Enhanced LLM metrics, cost tracking, production optimizations
Best for: Open-source projects, simple tracing needs, getting started quickly
# Recommended: Install with Azure OpenAI integration
pip install honeyhive[openinference-azure-openai]
# Alternative: Manual installation
pip install honeyhive openinference-instrumentation-openai openai>=1.0.0
from honeyhive import HoneyHiveTracer
from openinference.instrumentation.openai import OpenAIInstrumentor
import openai
import os
# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# AZURE_OPENAI_API_KEY=your-azure-openai-key
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
) # Uses HH_API_KEY from environment
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# Basic usage with error handling
try:
from openai import AzureOpenAI
# Create Azure OpenAI client
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-02-01",
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")
)
# Chat completion
response = client.chat.completions.create(
model="gpt-35-turbo", # Your deployment name
messages=[{"role": "user", "content": "Hello from Azure OpenAI!"}]
)
# Automatically traced! ✨
except openai.APIError as e:
print(f"Azure OpenAI API error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from openinference.instrumentation.openai import OpenAIInstrumentor
import openai
# Initialize with custom configuration
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable
project="your-project", # Or set HH_PROJECT environment variable
source="production" # Or set HH_SOURCE environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
@trace(tracer=tracer, event_type=EventType.chain)
def multi_deployment_azure_workflow(prompts: List[str]) -> dict:
"""Advanced example with business context and multiple Azure OpenAI calls."""
from openai import AzureOpenAI
# Configure Azure OpenAI client
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-02-01",
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")
)
# Add business context to the trace
enrich_span({
"business.input_type": type(prompts).__name__,
"business.use_case": "multi_deployment_analysis",
"azure-openai.strategy": "azure_deployment_comparison",
"instrumentor.type": "openinference"
})
try:
# Test multiple Azure OpenAI deployments
deployments = [
"gpt-35-turbo", # Your GPT-3.5 deployment
"gpt-4", # Your GPT-4 deployment
"gpt-4-turbo" # Your GPT-4 Turbo deployment
]
results = []
for prompt in prompts:
deployment_results = {}
for deployment in deployments:
try:
# Test each deployment
response = client.chat.completions.create(
model=deployment,
messages=[
{"role": "user", "content": prompt}
],
max_tokens=150,
temperature=0.7
)
deployment_results[deployment] = {
"content": response.choices[0].message.content,
"tokens": response.usage.total_tokens,
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens
}
except Exception as e:
deployment_results[deployment] = {"error": str(e)}
results.append({
"prompt": prompt,
"deployment_responses": deployment_results
})
# Add result metadata
enrich_span({
"business.successful": True,
"azure-openai.models_used": ["gpt-35-turbo", "gpt-4", "gpt-4-turbo"],
"business.result_confidence": "high"
})
return {{RETURN_VALUE}}
except openai.APIError as e:
enrich_span({
"error.type": "api_error",
"error.message": str(e),
"instrumentor.source": "openinference"
})
raise
Common OpenInference Issues:
Missing Traces
# Use correct initialization pattern # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = OpenAIInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Performance for High Volume
# OpenInference uses efficient span processors automatically # No additional configuration needed
Multiple Instrumentors
# You can combine OpenInference with other instrumentors from openinference.instrumentation.openai import OpenAIInstrumentor from openinference.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentors separately with tracer_provider # REPLACE_WITH_INSTRUMENTOR_SETUP OpenAIInstrumentor(), # Works for both OpenAI and Azure OpenAI AnthropicInstrumentor() ] )
Environment Configuration
# HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # Azure OpenAI configuration export AZURE_OPENAI_API_KEY="your-azure-openai-key" export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com/" export AZURE_OPENAI_API_VERSION="2024-02-01"
Best for: Production deployments, cost tracking, enhanced LLM observability
# Recommended: Install with Traceloop Azure OpenAI integration
pip install honeyhive[traceloop-azure-openai]
# Alternative: Manual installation
pip install honeyhive opentelemetry-instrumentation-openai openai>=1.0.0
from honeyhive import HoneyHiveTracer
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
import openai
import os
# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# AZURE_OPENAI_API_KEY=your-azure-openai-key
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
) # Uses HH_API_KEY from environment
# Step 2: Initialize Traceloop instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# Basic usage with automatic tracing
try:
from openai import AzureOpenAI
# Create Azure OpenAI client
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-02-01",
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")
)
# Chat completion
response = client.chat.completions.create(
model="gpt-35-turbo", # Your deployment name
messages=[{"role": "user", "content": "Hello from Azure OpenAI!"}]
)
# Automatically traced by Traceloop with enhanced metrics! ✨
except openai.APIError as e:
print(f"Azure OpenAI API error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
import openai
# Initialize HoneyHive with Traceloop instrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable
project="your-project", # Or set HH_PROJECT environment variable
source="production" # Or set HH_SOURCE environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
@trace(tracer=tracer, event_type=EventType.chain)
def multi_deployment_azure_workflow(prompts: List[str]) -> dict:
"""Advanced example with business context and enhanced LLM metrics."""
from openai import AzureOpenAI
# Configure Azure OpenAI client
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-02-01",
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")
)
# Add business context to the trace
enrich_span({
"business.input_type": type(prompts).__name__,
"business.use_case": "multi_deployment_analysis",
"azure-openai.strategy": "cost_optimized_azure_deployment_comparison",
"instrumentor.type": "openllmetry",
"observability.enhanced": True
})
try:
# Test multiple Azure OpenAI deployments
deployments = [
"gpt-35-turbo", # Your GPT-3.5 deployment
"gpt-4", # Your GPT-4 deployment
"gpt-4-turbo" # Your GPT-4 Turbo deployment
]
results = []
for prompt in prompts:
deployment_results = {}
for deployment in deployments:
try:
# Test each deployment
response = client.chat.completions.create(
model=deployment,
messages=[
{"role": "user", "content": prompt}
],
max_tokens=150,
temperature=0.7
)
deployment_results[deployment] = {
"content": response.choices[0].message.content,
"tokens": response.usage.total_tokens,
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens
}
except Exception as e:
deployment_results[deployment] = {"error": str(e)}
results.append({
"prompt": prompt,
"deployment_responses": deployment_results
})
# Add result metadata
enrich_span({
"business.successful": True,
"azure-openai.models_used": ["gpt-35-turbo", "gpt-4", "gpt-4-turbo"],
"business.result_confidence": "high",
"openllmetry.cost_tracking": "enabled",
"openllmetry.token_metrics": "captured"
})
return {{RETURN_VALUE}}
except openai.APIError as e:
enrich_span({
"error.type": "api_error",
"error.message": str(e),
"instrumentor.error_handling": "openllmetry"
})
raise
Common Traceloop Issues:
Missing Traces
# Ensure Traceloop instrumentor is passed to tracer from opentelemetry.instrumentation.openai import OpenAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = OpenAIInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Enhanced Metrics Not Showing
# Ensure you're using the latest version # pip install --upgrade opentelemetry-instrumentation-openai # The instrumentor automatically captures enhanced metrics from opentelemetry.instrumentation.openai import OpenAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = OpenAIInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Multiple Traceloop Instrumentors
# You can combine multiple Traceloop instrumentors from opentelemetry.instrumentation.openai import OpenAIInstrumentor from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentors separately with tracer_provider # REPLACE_WITH_INSTRUMENTOR_SETUP OpenAIInstrumentor(), # Works for both OpenAI and Azure OpenAI AnthropicInstrumentor() # Traceloop Anthropic ] )
Performance Optimization
# Traceloop instrumentors handle batching automatically # No additional configuration needed for performance
Environment Configuration
# HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # Azure OpenAI configuration export AZURE_OPENAI_API_KEY="your-azure-openai-key" export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com/" export AZURE_OPENAI_API_VERSION="2024-02-01" # Optional: Traceloop cloud features export TRACELOOP_API_KEY="your-traceloop-key" export TRACELOOP_BASE_URL="https://api.traceloop.com"
Comparison: OpenInference vs Traceloop for Azure OpenAI
Feature |
OpenInference |
Traceloop |
|---|---|---|
Setup Complexity |
Simple, single instrumentor |
Single instrumentor setup |
Token Tracking |
Basic span attributes |
Detailed token metrics + costs |
Model Metrics |
Model name, basic timing |
Cost per model, latency analysis |
Performance |
Lightweight, fast |
Optimized with smart batching |
Cost Analysis |
Manual calculation needed |
Automatic cost per request |
Production Ready |
✅ Yes |
✅ Yes, with cost insights |
Debugging |
Standard OpenTelemetry |
Enhanced LLM-specific debug |
Best For |
Simple integrations, dev |
Production, cost optimization |
Migration Between Instrumentors
From OpenInference to Traceloop:
# Before (OpenInference)
from openinference.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# After (Traceloop) - different instrumentor package
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
From Traceloop to OpenInference:
# Before (Traceloop)
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# After (OpenInference)
from openinference.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
See Also
Multi-Provider Integration - Use Azure OpenAI with other providers
LLM Application Patterns - Common integration patterns
Add LLM Tracing in 5 Minutes - LLM integration tutorial
Integrate with OpenAI - Similar integration for OpenAI