Integrate with Google AI
Note
Problem-solving guide for Google AI integration
This guide helps you solve specific problems when integrating HoneyHive with Google AI, with support for multiple instrumentor options.
This guide covers Google AI integration with HoneyHive’s BYOI architecture, supporting both OpenInference and Traceloop instrumentors.
Compatibility
Problem: I need to know if my Python version and Google AI SDK version are compatible with HoneyHive.
Solution: Check the compatibility information below before installation.
Python Version Support
Support Level |
Python Versions |
|---|---|
Fully Supported |
3.11, 3.12, 3.13 |
Not Supported |
3.10 and below |
Provider SDK Requirements
Minimum: google-generativeai >= 0.3.0
Recommended: google-generativeai >= 0.4.0
Tested Versions: 0.4.0, 0.5.0, 0.6.0
Instrumentor Compatibility
Instrumentor |
Status |
Notes |
|---|---|---|
OpenInference |
Fully Supported |
Gemini Pro and Pro Vision support with multimodal tracing |
Traceloop |
Experimental |
Basic support available, some Gemini-specific features in development |
Known Limitations
Streaming: Supported with manual span management required
Multimodal Input: Vision features traced but media content not captured
Function Calling: Supported in Gemini Pro models
Safety Settings: Not captured in traces by default
Note
For the complete compatibility matrix across all providers, see Multi-Provider Integration.
Choose Your Instrumentor
Problem: I need to choose between OpenInference and Traceloop for Google AI integration.
Solution: Choose the instrumentor that best fits your needs:
OpenInference: Open-source, lightweight, great for getting started
Traceloop: Enhanced LLM metrics, cost tracking, production optimizations
Best for: Open-source projects, simple tracing needs, getting started quickly
# Recommended: Install with Google AI integration
pip install honeyhive[openinference-google-ai]
# Alternative: Manual installation
pip install honeyhive openinference-instrumentation-google-generativeai google-generativeai>=0.3.0
from honeyhive import HoneyHiveTracer
from openinference.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor
import google.generativeai
import os
# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# GOOGLE_API_KEY=your-google-ai-key
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
) # Uses HH_API_KEY from environment
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = GoogleGenerativeAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# Basic usage with error handling
try:
import google.generativeai as genai
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content("Hello!")
print(response.text)
# Automatically traced! ✨
except google.generativeai.types.GoogleGenerativeAIError as e:
print(f"Google AI API error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from openinference.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor
import google.generativeai
# Initialize with custom configuration
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable
project="your-project", # Or set HH_PROJECT environment variable
source="production" # Or set HH_SOURCE environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = GoogleGenerativeAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
@trace(tracer=tracer, event_type=EventType.chain)
def generate_content_comparison(prompt: str) -> dict:
"""Advanced example with business context and multiple Google AI calls."""
{{ADVANCED_USAGE_EXAMPLE}}
# Add business context to the trace
enrich_span({
"business.input_type": type(prompt).__name__,
"business.use_case": "content_generation",
"google-ai.strategy": "multi_model_gemini",
"instrumentor.type": "openinference"
})
try:
{{ADVANCED_IMPLEMENTATION}}
# Add result metadata
enrich_span({
"business.successful": True,
"google-ai.models_used": ["gemini-pro", "gemini-pro-vision"],
"business.result_confidence": "high"
})
return {{RETURN_VALUE}}
except google.generativeai.types.GoogleGenerativeAIError as e:
enrich_span({
"error.type": "api_error",
"error.message": str(e),
"instrumentor.source": "openinference"
})
raise
Common OpenInference Issues:
Missing Traces
# Use correct initialization pattern # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = GoogleGenerativeAIInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Performance for High Volume
# OpenInference uses efficient span processors automatically # No additional configuration needed
Multiple Instrumentors
# You can combine OpenInference with other instrumentors {{MULTIPLE_INSTRUMENTORS_EXAMPLE}}
Environment Configuration
# HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # Google AI configuration export GOOGLE_API_KEY="your-google-ai-api-key"
Best for: Production deployments, cost tracking, enhanced LLM observability
# Recommended: Install with Traceloop Google AI integration
pip install honeyhive[traceloop-google-ai]
# Alternative: Manual installation
pip install honeyhive opentelemetry-instrumentation-google-generativeai google-generativeai>=0.3.0
from honeyhive import HoneyHiveTracer
from opentelemetry.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor
import google.generativeai
import os
# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# GOOGLE_API_KEY=your-google-ai-key
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
) # Uses HH_API_KEY from environment
# Step 2: Initialize Traceloop instrumentor separately with tracer_provider
instrumentor = GoogleGenerativeAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# Basic usage with automatic tracing
try:
import google.generativeai as genai
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content("Hello!")
print(response.text)
# Automatically traced by Traceloop with enhanced metrics! ✨
except google.generativeai.types.GoogleGenerativeAIError as e:
print(f"Google AI API error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from opentelemetry.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor
import google.generativeai
# Initialize HoneyHive with Traceloop instrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable
project="your-project", # Or set HH_PROJECT environment variable
source="production" # Or set HH_SOURCE environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = GoogleGenerativeAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
@trace(tracer=tracer, event_type=EventType.chain)
def generate_content_comparison(prompt: str) -> dict:
"""Advanced example with business context and enhanced LLM metrics."""
{{ADVANCED_USAGE_EXAMPLE}}
# Add business context to the trace
enrich_span({
"business.input_type": type(prompt).__name__,
"business.use_case": "content_generation",
"google-ai.strategy": "cost_optimized_multi_model_gemini",
"instrumentor.type": "openllmetry",
"observability.enhanced": True
})
try:
{{ADVANCED_IMPLEMENTATION}}
# Add result metadata
enrich_span({
"business.successful": True,
"google-ai.models_used": ["gemini-pro", "gemini-pro-vision"],
"business.result_confidence": "high",
"openllmetry.cost_tracking": "enabled",
"openllmetry.token_metrics": "captured"
})
return {{RETURN_VALUE}}
except google.generativeai.types.GoogleGenerativeAIError as e:
enrich_span({
"error.type": "api_error",
"error.message": str(e),
"instrumentor.error_handling": "openllmetry"
})
raise
Common Traceloop Issues:
Missing Traces
# Ensure Traceloop instrumentor is passed to tracer from opentelemetry.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = GoogleGenerativeAIInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Enhanced Metrics Not Showing
# Ensure you're using the latest version # pip install --upgrade opentelemetry-instrumentation-google-generativeai # The instrumentor automatically captures enhanced metrics from opentelemetry.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = GoogleGenerativeAIInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Multiple Traceloop Instrumentors
# You can combine multiple Traceloop instrumentors {{MULTIPLE_TRACELOOP_INSTRUMENTORS_EXAMPLE}}
Performance Optimization
# Traceloop instrumentors handle batching automatically # No additional configuration needed for performance
Environment Configuration
# HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # Google AI configuration export GOOGLE_API_KEY="your-google-ai-api-key" # Optional: Traceloop cloud features export TRACELOOP_API_KEY="your-traceloop-key" export TRACELOOP_BASE_URL="https://api.traceloop.com"
Comparison: OpenInference vs Traceloop for Google AI
Feature |
OpenInference |
Traceloop |
|---|---|---|
Setup Complexity |
Simple, single instrumentor |
Single instrumentor setup |
Token Tracking |
Basic span attributes |
Detailed token metrics + costs |
Model Metrics |
Model name, basic timing |
Cost per model, latency analysis |
Performance |
Lightweight, fast |
Optimized with smart batching |
Cost Analysis |
Manual calculation needed |
Automatic cost per request |
Production Ready |
✅ Yes |
✅ Yes, with cost insights |
Debugging |
Standard OpenTelemetry |
Enhanced LLM-specific debug |
Best For |
Simple integrations, dev |
Production, cost optimization |
Migration Between Instrumentors
From OpenInference to Traceloop:
# Before (OpenInference)
from openinference.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = GoogleGenerativeAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# After (Traceloop) - different instrumentor package
from opentelemetry.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = GoogleGenerativeAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
From Traceloop to OpenInference:
# Before (Traceloop)
from opentelemetry.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = GoogleGenerativeAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# After (OpenInference)
from openinference.instrumentation.google_generativeai import GoogleGenerativeAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = GoogleGenerativeAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
See Also
Multi-Provider Integration - Use Google AI with other providers
LLM Application Patterns - Common integration patterns
Add LLM Tracing in 5 Minutes - LLM integration tutorial
Integrate with OpenAI - Similar integration for OpenAI GPT