Integrate with Model Context Protocol (MCP)

Note

Problem-solving guide for Model Context Protocol (MCP) integration

This guide helps you solve specific problems when integrating HoneyHive with Model Context Protocol (MCP), with support for multiple instrumentor options.

This guide covers Model Context Protocol (MCP) integration with HoneyHive’s BYOI architecture, supporting both OpenInference and Traceloop instrumentors.

Compatibility

Problem: I need to know if my Python version and Model Context Protocol (MCP) SDK version are compatible with HoneyHive.

Solution: Check the compatibility information below before installation.

Python Version Support

Support Level

Python Versions

Fully Supported

3.11, 3.12, 3.13

Not Supported

3.10 and below

Provider SDK Requirements

  • Minimum: mcp-sdk >= 0.1.0

  • Recommended: mcp-sdk >= 0.2.0

  • Tested Versions: 0.2.0, 0.3.0

Instrumentor Compatibility

Instrumentor

Status

Notes

OpenInference

Experimental

Basic MCP protocol tracing, tool execution captured

Traceloop

Not Supported

Traceloop instrumentor not available for MCP - use OpenInference

Known Limitations

  • Protocol Version: MCP 1.0 protocol required, earlier versions not supported

  • Tool Discovery: Automatic tool discovery traced, manual tools require enrichment

  • Streaming Tools: Partial support for streaming tool responses

  • Multi-Server: Multiple MCP server connections require manual span management

Note

For the complete compatibility matrix across all providers, see Multi-Provider Integration.

Choose Your Instrumentor

Problem: I need to choose between OpenInference and Traceloop for Model Context Protocol (MCP) integration.

Solution: Choose the instrumentor that best fits your needs:

  • OpenInference: Open-source, lightweight, great for getting started

  • Traceloop: Enhanced LLM metrics, cost tracking, production optimizations

Best for: Open-source projects, simple tracing needs, getting started quickly

# Recommended: Install with Model Context Protocol (MCP) integration
pip install honeyhive[openinference-mcp]

# Alternative: Manual installation
pip install honeyhive openinference-instrumentation-mcp mcp>=1.0.0
from honeyhive import HoneyHiveTracer
from openinference.instrumentation.mcp import MCPInstrumentor
import mcp
import os

# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# MCP_API_KEY=your-mcp-key

# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)  # Uses HH_API_KEY from environment

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

# Basic usage with error handling
try:
    import mcp

    # Create MCP client
    client = mcp.Client(
        server_url="http://localhost:8000",
        api_key=os.getenv("MCP_API_KEY")
    )

    # Execute tool via MCP
    result = client.call_tool(
        name="web_search",
        arguments={"query": "Traceloop MCP integration"}
    )
    # Automatically traced! ✨
except mcp.MCPError as e:
    print(f"Model Context Protocol (MCP) API error: {e}")
except Exception as e:
    print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from openinference.instrumentation.mcp import MCPInstrumentor
import mcp

# Initialize with custom configuration
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    api_key="your-honeyhive-key",  # Or set HH_API_KEY environment variable
    project="your-project",        # Or set HH_PROJECT environment variable
    source="production"            # Or set HH_SOURCE environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

@trace(tracer=tracer, event_type=EventType.chain)
def multi_tool_mcp_workflow(tasks: List[Dict[str, Any]]) -> dict:
    """Advanced example with business context and multiple Model Context Protocol (MCP) calls."""
    import mcp

    # Configure MCP client
    client = mcp.Client(
        server_url=os.getenv("MCP_SERVER_URL", "http://localhost:8000"),
        api_key=os.getenv("MCP_API_KEY")
    )

    # Add business context to the trace
    enrich_span({
        "business.input_type": type(tasks).__name__,
        "business.use_case": "tool_orchestration",
        "mcp.strategy": "mcp_multi_tool",
        "instrumentor.type": "openinference"
    })

    try:
        # Execute multiple MCP tools in workflow
    available_tools = [
        "web_search",
        "file_processor",
        "data_analyzer",
        "content_generator"
    ]

    results = []
    for task in tasks:
        task_results = {}
        tool_name = task.get("tool")
        arguments = task.get("arguments", {})

        if tool_name in available_tools:
            try:
                # Execute MCP tool
                result = client.call_tool(
                    name=tool_name,
                    arguments=arguments
                )

                task_results[tool_name] = {
                    "success": True,
                    "result": result.content,
                    "metadata": result.metadata
                }

            except Exception as tool_error:
                task_results[tool_name] = {
                    "success": False,
                    "error": str(tool_error)
                }
        else:
            task_results[tool_name] = {
                "success": False,
                "error": f"Tool {tool_name} not available"
            }

        results.append({
            "task": task,
            "tool_results": task_results
        })

        # Add result metadata
        enrich_span({
            "business.successful": True,
            "mcp.models_used": ["web_search", "file_processor", "data_analyzer"],
            "business.result_confidence": "high"
        })

        return {{RETURN_VALUE}}

    except mcp.MCPError as e:
        enrich_span({
            "error.type": "api_error",
            "error.message": str(e),
            "instrumentor.source": "openinference"
        })
        raise

Common OpenInference Issues:

  1. Missing Traces

    # Use correct initialization pattern
    # Step 1: Initialize HoneyHive tracer first (without instrumentors)
    tracer = HoneyHiveTracer.init(
        project="your-project"  # Or set HH_PROJECT environment variable
    )
    
    # Step 2: Initialize instrumentor separately with tracer_provider
    instrumentor = MCPInstrumentor()
    instrumentor.instrument(tracer_provider=tracer.provider)
    
  2. Performance for High Volume

    # OpenInference uses efficient span processors automatically
    # No additional configuration needed
    
  3. Multiple Instrumentors

    # You can combine OpenInference with other instrumentors
    from openinference.instrumentation.mcp import MCPInstrumentor
     from openinference.instrumentation.openai import OpenAIInstrumentor
    
     # Step 1: Initialize HoneyHive tracer first (without instrumentors)
     tracer = HoneyHiveTracer.init(
         project="your-project"  # Or set HH_PROJECT environment variable
     )
    
     # Step 2: Initialize instrumentors separately with tracer_provider
     # REPLACE_WITH_INSTRUMENTOR_SETUP
             MCPInstrumentor(),
            OpenAIInstrumentor()
        ]
    )
    
  4. Environment Configuration

    # HoneyHive configuration
    export HH_API_KEY="your-honeyhive-api-key"
    export HH_SOURCE="production"
    
    # MCP configuration
    export MCP_SERVER_URL="http://localhost:8000"
    export MCP_API_KEY="your-mcp-api-key"  # Optional
    

Best for: Production deployments, cost tracking, enhanced LLM observability

# Recommended: Install with Traceloop Model Context Protocol (MCP) integration
pip install honeyhive[traceloop-mcp]

# Alternative: Manual installation
pip install honeyhive opentelemetry-instrumentation-mcp mcp>=1.0.0
from honeyhive import HoneyHiveTracer
from opentelemetry.instrumentation.mcp import MCPInstrumentor
import mcp
import os

# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# MCP_API_KEY=your-mcp-key

# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)  # Uses HH_API_KEY from environment

# Step 2: Initialize Traceloop instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

# Basic usage with automatic tracing
try:
    import mcp

    # Create MCP client
    client = mcp.Client(
        server_url="http://localhost:8000",
        api_key=os.getenv("MCP_API_KEY")
    )

    # Execute tool via MCP
    result = client.call_tool(
        name="web_search",
        arguments={"query": "Traceloop MCP integration"}
    )
    # Automatically traced by Traceloop with enhanced metrics! ✨
except mcp.MCPError as e:
    print(f"Model Context Protocol (MCP) API error: {e}")
except Exception as e:
    print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from opentelemetry.instrumentation.mcp import MCPInstrumentor
import mcp

# Initialize HoneyHive with Traceloop instrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    api_key="your-honeyhive-key",  # Or set HH_API_KEY environment variable
    project="your-project",        # Or set HH_PROJECT environment variable
    source="production"            # Or set HH_SOURCE environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

@trace(tracer=tracer, event_type=EventType.chain)
def multi_tool_mcp_workflow(tasks: List[Dict[str, Any]]) -> dict:
    """Advanced example with business context and enhanced LLM metrics."""
    import mcp

    # Configure MCP client
    client = mcp.Client(
        server_url=os.getenv("MCP_SERVER_URL", "http://localhost:8000"),
        api_key=os.getenv("MCP_API_KEY")
    )

    # Add business context to the trace
    enrich_span({
        "business.input_type": type(tasks).__name__,
        "business.use_case": "tool_orchestration",
        "mcp.strategy": "cost_optimized_mcp_multi_tool",
        "instrumentor.type": "openllmetry",
        "observability.enhanced": True
    })

    try:
        # Execute multiple MCP tools in workflow
    available_tools = [
        "web_search",
        "file_processor",
        "data_analyzer",
        "content_generator"
    ]

    results = []
    for task in tasks:
        task_results = {}
        tool_name = task.get("tool")
        arguments = task.get("arguments", {})

        if tool_name in available_tools:
            try:
                # Execute MCP tool
                result = client.call_tool(
                    name=tool_name,
                    arguments=arguments
                )

                task_results[tool_name] = {
                    "success": True,
                    "result": result.content,
                    "metadata": result.metadata
                }

            except Exception as tool_error:
                task_results[tool_name] = {
                    "success": False,
                    "error": str(tool_error)
                }
        else:
            task_results[tool_name] = {
                "success": False,
                "error": f"Tool {tool_name} not available"
            }

        results.append({
            "task": task,
            "tool_results": task_results
        })

        # Add result metadata
        enrich_span({
            "business.successful": True,
            "mcp.models_used": ["web_search", "file_processor", "data_analyzer"],
            "business.result_confidence": "high",
            "openllmetry.cost_tracking": "enabled",
            "openllmetry.token_metrics": "captured"
        })

        return {{RETURN_VALUE}}

    except mcp.MCPError as e:
        enrich_span({
            "error.type": "api_error",
            "error.message": str(e),
            "instrumentor.error_handling": "openllmetry"
        })
        raise

Common Traceloop Issues:

  1. Missing Traces

    # Ensure Traceloop instrumentor is passed to tracer
    from opentelemetry.instrumentation.mcp import MCPInstrumentor
    
    # Step 1: Initialize HoneyHive tracer first (without instrumentors)
    tracer = HoneyHiveTracer.init(
        project="your-project"  # Or set HH_PROJECT environment variable
    )
    
    # Step 2: Initialize instrumentor separately with tracer_provider
    instrumentor = MCPInstrumentor()
    instrumentor.instrument(tracer_provider=tracer.provider)
    
  2. Enhanced Metrics Not Showing

    # Ensure you're using the latest version
    # pip install --upgrade opentelemetry-instrumentation-mcp
    
    # The instrumentor automatically captures enhanced metrics
    from opentelemetry.instrumentation.mcp import MCPInstrumentor
    # Step 1: Initialize HoneyHive tracer first (without instrumentors)
    tracer = HoneyHiveTracer.init(
        project="your-project"  # Or set HH_PROJECT environment variable
    )
    
    # Step 2: Initialize instrumentor separately with tracer_provider
    instrumentor = MCPInstrumentor()
    instrumentor.instrument(tracer_provider=tracer.provider)
    
  3. Multiple Traceloop Instrumentors

    # You can combine multiple Traceloop instrumentors
    from opentelemetry.instrumentation.mcp import MCPInstrumentor
     from opentelemetry.instrumentation.openai import OpenAIInstrumentor
    
     # Step 1: Initialize HoneyHive tracer first (without instrumentors)
     tracer = HoneyHiveTracer.init(
         project="your-project"  # Or set HH_PROJECT environment variable
     )
    
     # Step 2: Initialize instrumentors separately with tracer_provider
     # REPLACE_WITH_INSTRUMENTOR_SETUP
             MCPInstrumentor(),         # Traceloop MCP
             OpenAIInstrumentor()       # Traceloop OpenAI
         ]
     )
    
  4. Performance Optimization

    # Traceloop instrumentors handle batching automatically
    # No additional configuration needed for performance
    
  5. Environment Configuration

    # HoneyHive configuration
    export HH_API_KEY="your-honeyhive-api-key"
    export HH_SOURCE="production"
    
    # MCP configuration
    export MCP_SERVER_URL="http://localhost:8000"
    export MCP_API_KEY="your-mcp-api-key"  # Optional
    

Comparison: OpenInference vs Traceloop for Model Context Protocol (MCP)

Feature Comparison

Feature

OpenInference

Traceloop

Setup Complexity

Simple, single instrumentor

Single instrumentor setup

Token Tracking

Basic span attributes

Detailed token metrics + costs

Model Metrics

Model name, basic timing

Cost per model, latency analysis

Performance

Lightweight, fast

Optimized with smart batching

Cost Analysis

Manual calculation needed

Automatic cost per request

Production Ready

✅ Yes

✅ Yes, with cost insights

Debugging

Standard OpenTelemetry

Enhanced LLM-specific debug

Best For

Simple integrations, dev

Production, cost optimization

Migration Between Instrumentors

From OpenInference to Traceloop:

# Before (OpenInference)
from openinference.instrumentation.mcp import MCPInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

# After (Traceloop) - different instrumentor package
from opentelemetry.instrumentation.mcp import MCPInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

From Traceloop to OpenInference:

# Before (Traceloop)
from opentelemetry.instrumentation.mcp import MCPInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

# After (OpenInference)
from openinference.instrumentation.mcp import MCPInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

See Also