Integrate with Model Context Protocol (MCP)
Note
Problem-solving guide for Model Context Protocol (MCP) integration
This guide helps you solve specific problems when integrating HoneyHive with Model Context Protocol (MCP), with support for multiple instrumentor options.
This guide covers Model Context Protocol (MCP) integration with HoneyHive’s BYOI architecture, supporting both OpenInference and Traceloop instrumentors.
Compatibility
Problem: I need to know if my Python version and Model Context Protocol (MCP) SDK version are compatible with HoneyHive.
Solution: Check the compatibility information below before installation.
Python Version Support
Support Level |
Python Versions |
|---|---|
Fully Supported |
3.11, 3.12, 3.13 |
Not Supported |
3.10 and below |
Provider SDK Requirements
Minimum: mcp-sdk >= 0.1.0
Recommended: mcp-sdk >= 0.2.0
Tested Versions: 0.2.0, 0.3.0
Instrumentor Compatibility
Instrumentor |
Status |
Notes |
|---|---|---|
OpenInference |
Experimental |
Basic MCP protocol tracing, tool execution captured |
Traceloop |
Not Supported |
Traceloop instrumentor not available for MCP - use OpenInference |
Known Limitations
Protocol Version: MCP 1.0 protocol required, earlier versions not supported
Tool Discovery: Automatic tool discovery traced, manual tools require enrichment
Streaming Tools: Partial support for streaming tool responses
Multi-Server: Multiple MCP server connections require manual span management
Note
For the complete compatibility matrix across all providers, see Multi-Provider Integration.
Choose Your Instrumentor
Problem: I need to choose between OpenInference and Traceloop for Model Context Protocol (MCP) integration.
Solution: Choose the instrumentor that best fits your needs:
OpenInference: Open-source, lightweight, great for getting started
Traceloop: Enhanced LLM metrics, cost tracking, production optimizations
Best for: Open-source projects, simple tracing needs, getting started quickly
# Recommended: Install with Model Context Protocol (MCP) integration
pip install honeyhive[openinference-mcp]
# Alternative: Manual installation
pip install honeyhive openinference-instrumentation-mcp mcp>=1.0.0
from honeyhive import HoneyHiveTracer
from openinference.instrumentation.mcp import MCPInstrumentor
import mcp
import os
# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# MCP_API_KEY=your-mcp-key
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
) # Uses HH_API_KEY from environment
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# Basic usage with error handling
try:
import mcp
# Create MCP client
client = mcp.Client(
server_url="http://localhost:8000",
api_key=os.getenv("MCP_API_KEY")
)
# Execute tool via MCP
result = client.call_tool(
name="web_search",
arguments={"query": "Traceloop MCP integration"}
)
# Automatically traced! ✨
except mcp.MCPError as e:
print(f"Model Context Protocol (MCP) API error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from openinference.instrumentation.mcp import MCPInstrumentor
import mcp
# Initialize with custom configuration
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable
project="your-project", # Or set HH_PROJECT environment variable
source="production" # Or set HH_SOURCE environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
@trace(tracer=tracer, event_type=EventType.chain)
def multi_tool_mcp_workflow(tasks: List[Dict[str, Any]]) -> dict:
"""Advanced example with business context and multiple Model Context Protocol (MCP) calls."""
import mcp
# Configure MCP client
client = mcp.Client(
server_url=os.getenv("MCP_SERVER_URL", "http://localhost:8000"),
api_key=os.getenv("MCP_API_KEY")
)
# Add business context to the trace
enrich_span({
"business.input_type": type(tasks).__name__,
"business.use_case": "tool_orchestration",
"mcp.strategy": "mcp_multi_tool",
"instrumentor.type": "openinference"
})
try:
# Execute multiple MCP tools in workflow
available_tools = [
"web_search",
"file_processor",
"data_analyzer",
"content_generator"
]
results = []
for task in tasks:
task_results = {}
tool_name = task.get("tool")
arguments = task.get("arguments", {})
if tool_name in available_tools:
try:
# Execute MCP tool
result = client.call_tool(
name=tool_name,
arguments=arguments
)
task_results[tool_name] = {
"success": True,
"result": result.content,
"metadata": result.metadata
}
except Exception as tool_error:
task_results[tool_name] = {
"success": False,
"error": str(tool_error)
}
else:
task_results[tool_name] = {
"success": False,
"error": f"Tool {tool_name} not available"
}
results.append({
"task": task,
"tool_results": task_results
})
# Add result metadata
enrich_span({
"business.successful": True,
"mcp.models_used": ["web_search", "file_processor", "data_analyzer"],
"business.result_confidence": "high"
})
return {{RETURN_VALUE}}
except mcp.MCPError as e:
enrich_span({
"error.type": "api_error",
"error.message": str(e),
"instrumentor.source": "openinference"
})
raise
Common OpenInference Issues:
Missing Traces
# Use correct initialization pattern # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = MCPInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Performance for High Volume
# OpenInference uses efficient span processors automatically # No additional configuration needed
Multiple Instrumentors
# You can combine OpenInference with other instrumentors from openinference.instrumentation.mcp import MCPInstrumentor from openinference.instrumentation.openai import OpenAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentors separately with tracer_provider # REPLACE_WITH_INSTRUMENTOR_SETUP MCPInstrumentor(), OpenAIInstrumentor() ] )
Environment Configuration
# HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # MCP configuration export MCP_SERVER_URL="http://localhost:8000" export MCP_API_KEY="your-mcp-api-key" # Optional
Best for: Production deployments, cost tracking, enhanced LLM observability
# Recommended: Install with Traceloop Model Context Protocol (MCP) integration
pip install honeyhive[traceloop-mcp]
# Alternative: Manual installation
pip install honeyhive opentelemetry-instrumentation-mcp mcp>=1.0.0
from honeyhive import HoneyHiveTracer
from opentelemetry.instrumentation.mcp import MCPInstrumentor
import mcp
import os
# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# MCP_API_KEY=your-mcp-key
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
) # Uses HH_API_KEY from environment
# Step 2: Initialize Traceloop instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# Basic usage with automatic tracing
try:
import mcp
# Create MCP client
client = mcp.Client(
server_url="http://localhost:8000",
api_key=os.getenv("MCP_API_KEY")
)
# Execute tool via MCP
result = client.call_tool(
name="web_search",
arguments={"query": "Traceloop MCP integration"}
)
# Automatically traced by Traceloop with enhanced metrics! ✨
except mcp.MCPError as e:
print(f"Model Context Protocol (MCP) API error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from opentelemetry.instrumentation.mcp import MCPInstrumentor
import mcp
# Initialize HoneyHive with Traceloop instrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable
project="your-project", # Or set HH_PROJECT environment variable
source="production" # Or set HH_SOURCE environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
@trace(tracer=tracer, event_type=EventType.chain)
def multi_tool_mcp_workflow(tasks: List[Dict[str, Any]]) -> dict:
"""Advanced example with business context and enhanced LLM metrics."""
import mcp
# Configure MCP client
client = mcp.Client(
server_url=os.getenv("MCP_SERVER_URL", "http://localhost:8000"),
api_key=os.getenv("MCP_API_KEY")
)
# Add business context to the trace
enrich_span({
"business.input_type": type(tasks).__name__,
"business.use_case": "tool_orchestration",
"mcp.strategy": "cost_optimized_mcp_multi_tool",
"instrumentor.type": "openllmetry",
"observability.enhanced": True
})
try:
# Execute multiple MCP tools in workflow
available_tools = [
"web_search",
"file_processor",
"data_analyzer",
"content_generator"
]
results = []
for task in tasks:
task_results = {}
tool_name = task.get("tool")
arguments = task.get("arguments", {})
if tool_name in available_tools:
try:
# Execute MCP tool
result = client.call_tool(
name=tool_name,
arguments=arguments
)
task_results[tool_name] = {
"success": True,
"result": result.content,
"metadata": result.metadata
}
except Exception as tool_error:
task_results[tool_name] = {
"success": False,
"error": str(tool_error)
}
else:
task_results[tool_name] = {
"success": False,
"error": f"Tool {tool_name} not available"
}
results.append({
"task": task,
"tool_results": task_results
})
# Add result metadata
enrich_span({
"business.successful": True,
"mcp.models_used": ["web_search", "file_processor", "data_analyzer"],
"business.result_confidence": "high",
"openllmetry.cost_tracking": "enabled",
"openllmetry.token_metrics": "captured"
})
return {{RETURN_VALUE}}
except mcp.MCPError as e:
enrich_span({
"error.type": "api_error",
"error.message": str(e),
"instrumentor.error_handling": "openllmetry"
})
raise
Common Traceloop Issues:
Missing Traces
# Ensure Traceloop instrumentor is passed to tracer from opentelemetry.instrumentation.mcp import MCPInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = MCPInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Enhanced Metrics Not Showing
# Ensure you're using the latest version # pip install --upgrade opentelemetry-instrumentation-mcp # The instrumentor automatically captures enhanced metrics from opentelemetry.instrumentation.mcp import MCPInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = MCPInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Multiple Traceloop Instrumentors
# You can combine multiple Traceloop instrumentors from opentelemetry.instrumentation.mcp import MCPInstrumentor from opentelemetry.instrumentation.openai import OpenAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentors separately with tracer_provider # REPLACE_WITH_INSTRUMENTOR_SETUP MCPInstrumentor(), # Traceloop MCP OpenAIInstrumentor() # Traceloop OpenAI ] )
Performance Optimization
# Traceloop instrumentors handle batching automatically # No additional configuration needed for performance
Environment Configuration
# HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # MCP configuration export MCP_SERVER_URL="http://localhost:8000" export MCP_API_KEY="your-mcp-api-key" # Optional
Comparison: OpenInference vs Traceloop for Model Context Protocol (MCP)
Feature |
OpenInference |
Traceloop |
|---|---|---|
Setup Complexity |
Simple, single instrumentor |
Single instrumentor setup |
Token Tracking |
Basic span attributes |
Detailed token metrics + costs |
Model Metrics |
Model name, basic timing |
Cost per model, latency analysis |
Performance |
Lightweight, fast |
Optimized with smart batching |
Cost Analysis |
Manual calculation needed |
Automatic cost per request |
Production Ready |
✅ Yes |
✅ Yes, with cost insights |
Debugging |
Standard OpenTelemetry |
Enhanced LLM-specific debug |
Best For |
Simple integrations, dev |
Production, cost optimization |
Migration Between Instrumentors
From OpenInference to Traceloop:
# Before (OpenInference)
from openinference.instrumentation.mcp import MCPInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# After (Traceloop) - different instrumentor package
from opentelemetry.instrumentation.mcp import MCPInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
From Traceloop to OpenInference:
# Before (Traceloop)
from opentelemetry.instrumentation.mcp import MCPInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# After (OpenInference)
from openinference.instrumentation.mcp import MCPInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = MCPInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
See Also
Multi-Provider Integration - Use MCP with other providers
LLM Application Patterns - Common integration patterns
Add LLM Tracing in 5 Minutes - LLM integration tutorial
Build Custom Tracing - Advanced tracing patterns