Integrate with OpenAI
Note
Problem-solving guide for OpenAI integration
This guide helps you solve specific problems when integrating HoneyHive with OpenAI, with support for multiple instrumentor options.
This guide covers OpenAI integration with HoneyHive’s BYOI architecture, supporting both OpenInference and Traceloop instrumentors.
Compatibility
Problem: I need to know if my Python version and OpenAI SDK version are compatible with HoneyHive.
Solution: Check the compatibility information below before installation.
Python Version Support
Support Level |
Python Versions |
|---|---|
Fully Supported |
3.11, 3.12, 3.13 |
Not Supported |
3.10 and below |
Provider SDK Requirements
Minimum: openai >= 1.0.0
Recommended: openai >= 1.10.0
Tested Versions: 1.10.0, 1.11.0, 1.12.0, 1.13.0
Instrumentor Compatibility
Instrumentor |
Status |
Notes |
|---|---|---|
OpenInference |
Fully Supported |
All features available including streaming and function calling |
Traceloop |
Fully Supported |
Enhanced metrics, cost tracking, and token usage analysis |
Known Limitations
Streaming: Requires manual span finalization for proper trace completion
Batch API: Limited instrumentor support, manual tracing recommended
Function Calling: Fully supported with both instrumentors
Vision API: Supported in OpenAI SDK >= 1.11.0, traced automatically
Note
For the complete compatibility matrix across all providers, see Multi-Provider Integration.
Choose Your Instrumentor
Problem: I need to choose between OpenInference and Traceloop for OpenAI integration.
Solution: Choose the instrumentor that best fits your needs:
OpenInference: Open-source, lightweight, great for getting started
Traceloop: Enhanced LLM metrics, cost tracking, production optimizations
Best for: Open-source projects, simple tracing needs, getting started quickly
# Recommended: Install with OpenAI integration
pip install honeyhive[openinference-openai]
# Alternative: Manual installation
pip install honeyhive openinference-instrumentation-openai openai>=1.0.0
from honeyhive import HoneyHiveTracer
from openinference.instrumentation.openai import OpenAIInstrumentor
import openai
import os
# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# OPENAI_API_KEY=your-openai-key
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
) # Uses HH_API_KEY from environment
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# Basic usage with error handling
try:
client = openai.OpenAI() # Uses OPENAI_API_KEY automatically
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello!"}]
)
print(response.choices[0].message.content)
# Automatically traced! ✨
except openai.OpenAIError as e:
print(f"OpenAI API error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from openinference.instrumentation.openai import OpenAIInstrumentor
import openai
# Initialize with custom configuration
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable
project="your-project", # Or set HH_PROJECT environment variable
source="production" # Or set HH_SOURCE environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
@trace(tracer=tracer, event_type=EventType.chain)
def multi_model_comparison(prompt: str) -> dict:
"""Advanced example with business context and multiple OpenAI calls."""
client = openai.OpenAI()
# Add business context to the trace
enrich_span({
"business.input_type": type(prompt).__name__,
"business.use_case": "model_comparison",
"openai.strategy": "multi_model_analysis",
"instrumentor.type": "openinference"
})
try:
# Test multiple OpenAI models
models = ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"]
results = []
for model in models:
try:
# Generate response with current model
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=150
)
results.append({
"model": model,
"response": response.choices[0].message.content,
"usage": response.usage.dict() if response.usage else None
})
except Exception as model_error:
results.append({
"model": model,
"error": str(model_error)
})
# Add result metadata
enrich_span({
"business.successful": True,
"openai.models_used": models,
"business.result_confidence": "high"
})
return {
"prompt": prompt,
"model_results": results,
"comparison_completed": True
}
# Add result metadata
enrich_span({
"business.successful": True,
"openai.models_used": ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"],
"business.result_confidence": "high"
})
return {
"prompt": prompt,
"model_results": results,
"comparison_completed": True
}
except openai.OpenAIError as e:
enrich_span({
"error.type": "api_error",
"error.message": str(e),
"instrumentor.source": "openinference"
})
raise
Common OpenInference Issues:
Missing Traces
# Use correct initialization pattern # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = OpenAIInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Performance for High Volume
# OpenInference uses efficient span processors automatically # No additional configuration needed
Multiple Instrumentors
# You can combine OpenInference with other instrumentors from openinference.instrumentation.openai import OpenAIInstrumentor from openinference.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentors separately with tracer_provider openai_instrumentor = OpenAIInstrumentor() anthropic_instrumentor = AnthropicInstrumentor() openai_instrumentor.instrument(tracer_provider=tracer.provider) anthropic_instrumentor.instrument(tracer_provider=tracer.provider)
Environment Configuration
# HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # OpenAI configuration export OPENAI_API_KEY="your-openai-api-key"
Best for: Production deployments, cost tracking, enhanced LLM observability
# Recommended: Install with Traceloop OpenAI integration
pip install honeyhive[traceloop-openai]
# Alternative: Manual installation
pip install honeyhive opentelemetry-instrumentation-openai openai>=1.0.0
from honeyhive import HoneyHiveTracer
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
import openai
import os
# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# OPENAI_API_KEY=your-openai-key
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
) # Uses HH_API_KEY from environment
# Step 2: Initialize Traceloop instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# Basic usage with automatic tracing
try:
client = openai.OpenAI() # Uses OPENAI_API_KEY automatically
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello!"}]
)
print(response.choices[0].message.content)
# Automatically traced by Traceloop with enhanced metrics! ✨
except openai.OpenAIError as e:
print(f"OpenAI API error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
import openai
# Initialize HoneyHive with Traceloop instrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
api_key="your-honeyhive-key", # Or set HH_API_KEY environment variable
project="your-project", # Or set HH_PROJECT environment variable
source="production" # Or set HH_SOURCE environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
@trace(tracer=tracer, event_type=EventType.chain)
def multi_model_comparison(prompt: str) -> dict:
"""Advanced example with business context and enhanced LLM metrics."""
client = openai.OpenAI()
# Add business context to the trace
enrich_span({
"business.input_type": type(prompt).__name__,
"business.use_case": "model_comparison",
"openai.strategy": "cost_optimized_multi_model_analysis",
"instrumentor.type": "openllmetry",
"observability.enhanced": True
})
try:
# Test multiple OpenAI models
models = ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"]
results = []
for model in models:
try:
# Generate response with current model
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=150
)
results.append({
"model": model,
"response": response.choices[0].message.content,
"usage": response.usage.dict() if response.usage else None
})
except Exception as model_error:
results.append({
"model": model,
"error": str(model_error)
})
# Add result metadata
enrich_span({
"business.successful": True,
"openai.models_used": models,
"business.result_confidence": "high"
})
return {
"prompt": prompt,
"model_results": results,
"comparison_completed": True
}
# Add result metadata
enrich_span({
"business.successful": True,
"openai.models_used": ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"],
"business.result_confidence": "high",
"openllmetry.cost_tracking": "enabled",
"openllmetry.token_metrics": "captured"
})
return {
"prompt": prompt,
"model_results": results,
"comparison_completed": True
}
except openai.OpenAIError as e:
enrich_span({
"error.type": "api_error",
"error.message": str(e),
"instrumentor.error_handling": "openllmetry"
})
raise
Common Traceloop Issues:
Missing Traces
# Ensure Traceloop instrumentor is passed to tracer from opentelemetry.instrumentation.openai import OpenAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = OpenAIInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Enhanced Metrics Not Showing
# Ensure you're using the latest version # pip install --upgrade opentelemetry-instrumentation-openai # The instrumentor automatically captures enhanced metrics from opentelemetry.instrumentation.openai import OpenAIInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentor separately with tracer_provider instrumentor = OpenAIInstrumentor() instrumentor.instrument(tracer_provider=tracer.provider)
Multiple Traceloop Instrumentors
# You can combine multiple Traceloop instrumentors from opentelemetry.instrumentation.openai import OpenAIInstrumentor from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor # Step 1: Initialize HoneyHive tracer first (without instrumentors) tracer = HoneyHiveTracer.init( project="your-project" # Or set HH_PROJECT environment variable ) # Step 2: Initialize instrumentors separately with tracer_provider openai_instrumentor = OpenAIInstrumentor() # Traceloop OpenAI anthropic_instrumentor = AnthropicInstrumentor() # Traceloop Anthropic openai_instrumentor.instrument(tracer_provider=tracer.provider) anthropic_instrumentor.instrument(tracer_provider=tracer.provider)
Performance Optimization
# Traceloop instrumentors handle batching automatically # No additional configuration needed for performance
Environment Configuration
# HoneyHive configuration export HH_API_KEY="your-honeyhive-api-key" export HH_SOURCE="production" # OpenAI configuration export OPENAI_API_KEY="your-openai-api-key" # Optional: Traceloop cloud features export TRACELOOP_API_KEY="your-traceloop-key" export TRACELOOP_BASE_URL="https://api.traceloop.com"
Comparison: OpenInference vs Traceloop for OpenAI
Feature |
OpenInference |
Traceloop |
|---|---|---|
Setup Complexity |
Simple, single instrumentor |
Single instrumentor setup |
Token Tracking |
Basic span attributes |
Detailed token metrics + costs |
Model Metrics |
Model name, basic timing |
Cost per model, latency analysis |
Performance |
Lightweight, fast |
Optimized with smart batching |
Cost Analysis |
Manual calculation needed |
Automatic cost per request |
Production Ready |
✅ Yes |
✅ Yes, with cost insights |
Debugging |
Standard OpenTelemetry |
Enhanced LLM-specific debug |
Best For |
Simple integrations, dev |
Production, cost optimization |
Migration Between Instrumentors
From OpenInference to Traceloop:
# Before (OpenInference)
from openinference.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# After (Traceloop) - different instrumentor package
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
From Traceloop to OpenInference:
# Before (Traceloop)
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
# After (OpenInference)
from openinference.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
project="your-project" # Or set HH_PROJECT environment variable
)
# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)
See Also
Multi-Provider Integration - Use OpenAI with other providers
LLM Application Patterns - Common integration patterns
Add LLM Tracing in 5 Minutes - LLM integration tutorial
Integrate with Anthropic - Similar integration for Anthropic Claude