Integrate with OpenAI

Note

Problem-solving guide for OpenAI integration

This guide helps you solve specific problems when integrating HoneyHive with OpenAI, with support for multiple instrumentor options.

This guide covers OpenAI integration with HoneyHive’s BYOI architecture, supporting both OpenInference and Traceloop instrumentors.

Compatibility

Problem: I need to know if my Python version and OpenAI SDK version are compatible with HoneyHive.

Solution: Check the compatibility information below before installation.

Python Version Support

Support Level

Python Versions

Fully Supported

3.11, 3.12, 3.13

Not Supported

3.10 and below

Provider SDK Requirements

  • Minimum: openai >= 1.0.0

  • Recommended: openai >= 1.10.0

  • Tested Versions: 1.10.0, 1.11.0, 1.12.0, 1.13.0

Instrumentor Compatibility

Instrumentor

Status

Notes

OpenInference

Fully Supported

All features available including streaming and function calling

Traceloop

Fully Supported

Enhanced metrics, cost tracking, and token usage analysis

Known Limitations

  • Streaming: Requires manual span finalization for proper trace completion

  • Batch API: Limited instrumentor support, manual tracing recommended

  • Function Calling: Fully supported with both instrumentors

  • Vision API: Supported in OpenAI SDK >= 1.11.0, traced automatically

Note

For the complete compatibility matrix across all providers, see Multi-Provider Integration.

Choose Your Instrumentor

Problem: I need to choose between OpenInference and Traceloop for OpenAI integration.

Solution: Choose the instrumentor that best fits your needs:

  • OpenInference: Open-source, lightweight, great for getting started

  • Traceloop: Enhanced LLM metrics, cost tracking, production optimizations

Best for: Open-source projects, simple tracing needs, getting started quickly

# Recommended: Install with OpenAI integration
pip install honeyhive[openinference-openai]

# Alternative: Manual installation
pip install honeyhive openinference-instrumentation-openai openai>=1.0.0
from honeyhive import HoneyHiveTracer
from openinference.instrumentation.openai import OpenAIInstrumentor
import openai
import os

# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# OPENAI_API_KEY=your-openai-key

# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)  # Uses HH_API_KEY from environment

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

# Basic usage with error handling
try:
    client = openai.OpenAI()  # Uses OPENAI_API_KEY automatically
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": "Hello!"}]
    )
    print(response.choices[0].message.content)
    # Automatically traced! ✨
except openai.OpenAIError as e:
    print(f"OpenAI API error: {e}")
except Exception as e:
    print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from openinference.instrumentation.openai import OpenAIInstrumentor
import openai

# Initialize with custom configuration
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    api_key="your-honeyhive-key",  # Or set HH_API_KEY environment variable
    project="your-project",        # Or set HH_PROJECT environment variable
    source="production"            # Or set HH_SOURCE environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

@trace(tracer=tracer, event_type=EventType.chain)
def multi_model_comparison(prompt: str) -> dict:
    """Advanced example with business context and multiple OpenAI calls."""
    client = openai.OpenAI()

    # Add business context to the trace
    enrich_span({
        "business.input_type": type(prompt).__name__,
        "business.use_case": "model_comparison",
        "openai.strategy": "multi_model_analysis",
        "instrumentor.type": "openinference"
    })

    try:
        # Test multiple OpenAI models
    models = ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"]

    results = []
    for model in models:
        try:
            # Generate response with current model
            response = client.chat.completions.create(
                model=model,
                messages=[{"role": "user", "content": prompt}],
                max_tokens=150
            )

            results.append({
                "model": model,
                "response": response.choices[0].message.content,
                "usage": response.usage.dict() if response.usage else None
            })

        except Exception as model_error:
            results.append({
                "model": model,
                "error": str(model_error)
            })

    # Add result metadata
    enrich_span({
        "business.successful": True,
        "openai.models_used": models,
        "business.result_confidence": "high"
    })

    return {
        "prompt": prompt,
        "model_results": results,
        "comparison_completed": True
    }

        # Add result metadata
        enrich_span({
            "business.successful": True,
            "openai.models_used": ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"],
            "business.result_confidence": "high"
        })

        return {
        "prompt": prompt,
        "model_results": results,
        "comparison_completed": True
    }

    except openai.OpenAIError as e:
        enrich_span({
            "error.type": "api_error",
            "error.message": str(e),
            "instrumentor.source": "openinference"
        })
        raise

Common OpenInference Issues:

  1. Missing Traces

    # Use correct initialization pattern
    # Step 1: Initialize HoneyHive tracer first (without instrumentors)
    tracer = HoneyHiveTracer.init(
        project="your-project"  # Or set HH_PROJECT environment variable
    )
    
    # Step 2: Initialize instrumentor separately with tracer_provider
    instrumentor = OpenAIInstrumentor()
    instrumentor.instrument(tracer_provider=tracer.provider)
    
  2. Performance for High Volume

    # OpenInference uses efficient span processors automatically
    # No additional configuration needed
    
  3. Multiple Instrumentors

    # You can combine OpenInference with other instrumentors
    from openinference.instrumentation.openai import OpenAIInstrumentor
     from openinference.instrumentation.anthropic import AnthropicInstrumentor
    
     # Step 1: Initialize HoneyHive tracer first (without instrumentors)
     tracer = HoneyHiveTracer.init(
         project="your-project"  # Or set HH_PROJECT environment variable
     )
    
     # Step 2: Initialize instrumentors separately with tracer_provider
     openai_instrumentor = OpenAIInstrumentor()
     anthropic_instrumentor = AnthropicInstrumentor()
    
    openai_instrumentor.instrument(tracer_provider=tracer.provider)
    anthropic_instrumentor.instrument(tracer_provider=tracer.provider)
    
  4. Environment Configuration

    # HoneyHive configuration
    export HH_API_KEY="your-honeyhive-api-key"
    export HH_SOURCE="production"
    
    # OpenAI configuration
    export OPENAI_API_KEY="your-openai-api-key"
    

Best for: Production deployments, cost tracking, enhanced LLM observability

# Recommended: Install with Traceloop OpenAI integration
pip install honeyhive[traceloop-openai]

# Alternative: Manual installation
pip install honeyhive opentelemetry-instrumentation-openai openai>=1.0.0
from honeyhive import HoneyHiveTracer
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
import openai
import os

# Environment variables (recommended for production)
# .env file:
# HH_API_KEY=your-honeyhive-key
# OPENAI_API_KEY=your-openai-key

# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)  # Uses HH_API_KEY from environment

# Step 2: Initialize Traceloop instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

# Basic usage with automatic tracing
try:
    client = openai.OpenAI()  # Uses OPENAI_API_KEY automatically
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": "Hello!"}]
    )
    print(response.choices[0].message.content)
    # Automatically traced by Traceloop with enhanced metrics! ✨
except openai.OpenAIError as e:
    print(f"OpenAI API error: {e}")
except Exception as e:
    print(f"Unexpected error: {e}")
from honeyhive import HoneyHiveTracer, trace, enrich_span
from honeyhive.models import EventType
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
import openai

# Initialize HoneyHive with Traceloop instrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    api_key="your-honeyhive-key",  # Or set HH_API_KEY environment variable
    project="your-project",        # Or set HH_PROJECT environment variable
    source="production"            # Or set HH_SOURCE environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

@trace(tracer=tracer, event_type=EventType.chain)
def multi_model_comparison(prompt: str) -> dict:
    """Advanced example with business context and enhanced LLM metrics."""
    client = openai.OpenAI()

    # Add business context to the trace
    enrich_span({
        "business.input_type": type(prompt).__name__,
        "business.use_case": "model_comparison",
        "openai.strategy": "cost_optimized_multi_model_analysis",
        "instrumentor.type": "openllmetry",
        "observability.enhanced": True
    })

    try:
        # Test multiple OpenAI models
    models = ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"]

    results = []
    for model in models:
        try:
            # Generate response with current model
            response = client.chat.completions.create(
                model=model,
                messages=[{"role": "user", "content": prompt}],
                max_tokens=150
            )

            results.append({
                "model": model,
                "response": response.choices[0].message.content,
                "usage": response.usage.dict() if response.usage else None
            })

        except Exception as model_error:
            results.append({
                "model": model,
                "error": str(model_error)
            })

    # Add result metadata
    enrich_span({
        "business.successful": True,
        "openai.models_used": models,
        "business.result_confidence": "high"
    })

    return {
        "prompt": prompt,
        "model_results": results,
        "comparison_completed": True
    }

        # Add result metadata
        enrich_span({
            "business.successful": True,
            "openai.models_used": ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"],
            "business.result_confidence": "high",
            "openllmetry.cost_tracking": "enabled",
            "openllmetry.token_metrics": "captured"
        })

        return {
        "prompt": prompt,
        "model_results": results,
        "comparison_completed": True
    }

    except openai.OpenAIError as e:
        enrich_span({
            "error.type": "api_error",
            "error.message": str(e),
            "instrumentor.error_handling": "openllmetry"
        })
        raise

Common Traceloop Issues:

  1. Missing Traces

    # Ensure Traceloop instrumentor is passed to tracer
    from opentelemetry.instrumentation.openai import OpenAIInstrumentor
    
    # Step 1: Initialize HoneyHive tracer first (without instrumentors)
    tracer = HoneyHiveTracer.init(
        project="your-project"  # Or set HH_PROJECT environment variable
    )
    
    # Step 2: Initialize instrumentor separately with tracer_provider
    instrumentor = OpenAIInstrumentor()
    instrumentor.instrument(tracer_provider=tracer.provider)
    
  2. Enhanced Metrics Not Showing

    # Ensure you're using the latest version
    # pip install --upgrade opentelemetry-instrumentation-openai
    
    # The instrumentor automatically captures enhanced metrics
    from opentelemetry.instrumentation.openai import OpenAIInstrumentor
    # Step 1: Initialize HoneyHive tracer first (without instrumentors)
    tracer = HoneyHiveTracer.init(
        project="your-project"  # Or set HH_PROJECT environment variable
    )
    
    # Step 2: Initialize instrumentor separately with tracer_provider
    instrumentor = OpenAIInstrumentor()
    instrumentor.instrument(tracer_provider=tracer.provider)
    
  3. Multiple Traceloop Instrumentors

    # You can combine multiple Traceloop instrumentors
    from opentelemetry.instrumentation.openai import OpenAIInstrumentor
     from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor
    
     # Step 1: Initialize HoneyHive tracer first (without instrumentors)
     tracer = HoneyHiveTracer.init(
         project="your-project"  # Or set HH_PROJECT environment variable
     )
    
     # Step 2: Initialize instrumentors separately with tracer_provider
     openai_instrumentor = OpenAIInstrumentor()      # Traceloop OpenAI
     anthropic_instrumentor = AnthropicInstrumentor() # Traceloop Anthropic
    
     openai_instrumentor.instrument(tracer_provider=tracer.provider)
     anthropic_instrumentor.instrument(tracer_provider=tracer.provider)
    
  4. Performance Optimization

    # Traceloop instrumentors handle batching automatically
    # No additional configuration needed for performance
    
  5. Environment Configuration

    # HoneyHive configuration
    export HH_API_KEY="your-honeyhive-api-key"
    export HH_SOURCE="production"
    
    # OpenAI configuration
    export OPENAI_API_KEY="your-openai-api-key"
    
    # Optional: Traceloop cloud features
    export TRACELOOP_API_KEY="your-traceloop-key"
    export TRACELOOP_BASE_URL="https://api.traceloop.com"
    

Comparison: OpenInference vs Traceloop for OpenAI

Feature Comparison

Feature

OpenInference

Traceloop

Setup Complexity

Simple, single instrumentor

Single instrumentor setup

Token Tracking

Basic span attributes

Detailed token metrics + costs

Model Metrics

Model name, basic timing

Cost per model, latency analysis

Performance

Lightweight, fast

Optimized with smart batching

Cost Analysis

Manual calculation needed

Automatic cost per request

Production Ready

✅ Yes

✅ Yes, with cost insights

Debugging

Standard OpenTelemetry

Enhanced LLM-specific debug

Best For

Simple integrations, dev

Production, cost optimization

Migration Between Instrumentors

From OpenInference to Traceloop:

# Before (OpenInference)
from openinference.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

# After (Traceloop) - different instrumentor package
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

From Traceloop to OpenInference:

# Before (Traceloop)
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

# After (OpenInference)
from openinference.instrumentation.openai import OpenAIInstrumentor
# Step 1: Initialize HoneyHive tracer first (without instrumentors)
tracer = HoneyHiveTracer.init(
    project="your-project"  # Or set HH_PROJECT environment variable
)

# Step 2: Initialize instrumentor separately with tracer_provider
instrumentor = OpenAIInstrumentor()
instrumentor.instrument(tracer_provider=tracer.provider)

See Also